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Calculation of potential flow with separation in a 
right-angled elbow with unequal branches 

By A. LICHTAROWICZ AND E. MARKLAND 
Departinent of Mechanical Engineering, University of Nottingham 

(Received 16 December 1961 and in revised form 16 May 1963) 

A method developed by Roshko (1953a, b )  has been applied t o  the case of flow 
round a right-angled elbow, in which the fluid separates at  the inner corner at  a 
speed which may be higher than the velocity of the separated flow far downstream. 
Numerical results have been evaluated and are presented for values of the ratio of 
the channel widths, downstream to upstream of the elbow, equal to 0.1 and 1.0. 

The elbow may be regarded as one half of a two-dimensional representation of 
an axisymmetric plate valve, on which experiments indicate considerable varia- 
tion in performance, the discharge coefficient being found to depend to a marked 
extent on the length of the valve land. 

1. Introduction 
The classical treatment of separated flows of an incompressible fluid as 

developed by Helmholtz and Kirchhoff often yields results which are in close 
agreement with experiments. The experimental result for the discharge coefficient 
of a sharp-edged orifice, for instance, agrees well with the calculated value of 
0.61. For the case of an orifice, on the other hand, which is sufficiently long for 
the flow to reattach to the wall of the orifice, so that the separation zone becomes 
confined between the separating streamline at  the front and a mixing region at 
the rear, the classical solution becomes inaccurate since the value of the pressure 
in the separated zone is no longer equal to that downstream. A similar condition 
exists in the case of separating flow past a normal flat plate, for which the Kirch- 
hoff solution indicates a wake of indefinitely increasing width and a drag co- 
efficient of 0.88, while experiments yield a drag coefficient of about 2.1 with a 
wake which, as is observed by Goldstein (1938) is not so wide as the calculated 
one. 

Birkhoff (1950) discusses two variations of the Kirchhoff solution, in which 
the wake behind a flat plate is represented by a closed cavity, the pressure in 
which may be chosen to be lower than that in the free stream. More recently 
Roshko (1953c~, b )  has proposed an alternative solution in which the wake is of 
infinite length but of finite width, which is achieved by postulating that the speed 
of the fluid at separation from the corner of the plate is greater than the velocity 
in the undisturbed flow, and remains constant along a separation streamline 
which curves until the direction is restored to that of the undisturbed stream. 
From this point the separation streamline is straight and parallel to the direction 
of undisturbed flow. The pressure on the back of the plate is lower than the free- 
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stream pressure; by suitably choosing the speed at  separation the measured 
value of the base pressure may be introduced into the calculated solution, so 
obtaining a result which agrees well with experiments. 

Roshko’s concept of a free streamline along which the velocity along an initial 
curved portion is higher than the velocity far downstream has been applied by 
Whiteman (1956) to determine the discharge coefficient of a long orifice for a 
range of cavitation numbers, cavitation number being here defined as the ratio 
of back pressure t o  pressure drop across the orifice. Similar results have been 
derived by Bloomer et al. (1955) in connexion with entrances to channels, and 
Appel & Laursen (1953) have, in the same context, dealt with the case where 
there is an approach channel of finite width. 

FIGURE 1. Schematic arrangement of plate valve. 

The present work is concerned with the case of flow in a two-dimensional model 
of a plate valve, which consists of a pipe running full bore and discharging at  its 
exit against a plate placed normal to the pipe axis, the required control of flow 
being achieved by varying the gap between the plate and the pipe exit. The valves 
are often made in such small sizes that the gap may be considerably less than the 
dimension of the flat land (see dimension 1 in figure 8) at the end of the pipe, so 
that, after separating from the right-angled corner, the fluid may reattach to the 
land as indicated on figure 1. In this event the pressure in the separation zone, 
which will be different from the downstream pressure, may be expected to be the 
primary factor determining the discharge coefficient. In  the case of liquids the 
separation pressure cannot fall below the vapour pressure so that, under cavi- 
tating conditions, the discharge coefficient will be sensitive to the pressure level 
at  which the valve is operating. The theoretical treatment given below was 
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developed in conjunction with experiments involving cavitating and non- 
cavitating flow through a plate valve, in which large variations in discharge 
coefficient were noted, as described briefly in $4. The work can also be applied 
to flow in a right-angled elbow with separation from the inner corner as con- 
sidered by Haase (1954). 

(CZ) z-plane ( h )  <-plane 

(c)  X-plane (4 t-plane 

FIGURE 2. Notation and t'rans€ormation planes. 

2. Transformations and equations 
Consider the flow in the z-plane round a right-angled elbow as shown on 

figure 2(a).  The walls BC, BA and AD form the fixed boundaries; at C the flow 
separates and is bounded by the curved free streamline CE, which turns through a 
right-angle and along which the speed 5 is constant. The straight portion ED 
of the free streamline is parallel to AD and the velocity along it falls asymptotic- 
ally from 

the velocity V, far upstream of the corner is given by 

where b and d are dimensions indicated on figure 2 (a).  

at E to V,. Writing, for convenience 

? = k V , =  1, ( 1 )  

V, = d /bk ,  (2) 
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The appropriate conformal transformations are 

and 

in which 

and these are illustrated on figure 2, the dimensions A2 and B2 in the t-plane 
being given by 

A2 = h2/(h2+ 1) ( 7 )  

and B2 = (h2+a2)/(h2+ I ) ,  (8) 

where a = +(v,+ l/Vi). (9) 
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TABLE 1 

Table 1 lists the positions of corresponding points in the various planes. The 
flow in the t-plane corresponding to the required flow in the z-plane is from a 
source at  B to an equal sink a t  D. The requisite source strength is d/7rrk, so the 
complex potential is 

Substitution in equations (3),  (4) and ( 5 )  leads to 

20 = {d/7rk) (log t - log (t - B2)). (10) 

Choosing the constant of integration such that z = 0 when t = 1 yields the 
desired result 
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2.1. T h e  coeficient of contraction 

The ratio dls may be regarded as a coefficient of contraction C,, and may be evaIu- 
ated by calculating from equation ( 1 2 )  the shape of the curved streamline CE, 
along which 1 2 t 2 A2, and substituting for A and B in terms of k from ( 6 ) ,  
(7) and ( 8 )  as follows: 

A t  E, 

and y = g so that 
k2- 1 2k 3a 1 

- I----- tan-1- +- tanh-I- 
1 
-~ - c, nk2 k2-1 nk a' 

Equations ( 1 5 )  and (16 )  give the position in the z-plane of E,  the point at which 
the curved free streamline is tangential to the subsequent straight portion. 
For potential flow the discharge coefficient C, is equal to the contraction co- 
efficient Cc; for a real fluid C, will differ from C, by an amount which depends on 
the Reynolds number of the motion. 

2.2. Velocity and pressure distribution along the free streamline 

The speed along the curved part CE of the streamline is constant, and has been 
taken as unity in the analysis. Beyond E, the velocity falls asymptotically 
from unity to l / k .  The variation of velocity along ED may be found as follows 

{ ( t -  1)4-(t-A2)-fi), 
d w  d w d t  - k2+l 

- -__ -_ - --- 
dz at dz 2E (17 )  

in which A2 >/ t >/ 0 along ED. The component velocities along ED are thus 

( (k2-  1)2-(k2+ 1)2t)3 
( 1  - t ) j  - 

k2+ 1 
u=O and v=- 

2k 

The corresponding values of x and y along ED are found, after some reduction, 
from equation ( 1 2 )  to be 

X I S  = 1 -Cc, 
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For any chosen value of t within the specified range the position along the free 
streamline and the velocity at  this position may be calculated. A similar pro- 
cedure may be adopted to determine the velocity along any of the walls. 

It is convenient to express static pressure p at any point in the form of a dimen- 
sionless pressure coefficient C, = ( p  -pd)/=$pV$. From (1) and Bernoulli’s equa- 
tion it follows that 

where V is the local velocity. 
(20) c, = 1-k2V2, 

3. Computed results 
Figures 3-6 show graphically the results of computations for a range of para- 

meters s/b and k.* 
The contraction coefficient given in table 2 is seen from figure 3 to be insensitive 

in changes in s/b up to about 0.3, the flow for small valve openings approximating 
to the limiting case of discharge from a large reservoir with stagnation pressure 

* Results with other values of s/b and k have been computed and are available. 
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1.0 
1.1 
1.2 
1.4 
1.6 
1.8 
2.0 
3.0 
4.0 

0.01 0.1 0.5 0.8 1.0 

0.6110 
0.6679 
0.7166 
0.7938 
0.8466 
0.8846 
0.9116 
0.9708 
0.9872 

0.6098 
0.6666 
0.7154 
0.7916 
0.8455 
0.8837 
0.9109 
0.9705 
0.9871 

0.5842 
0.6391 
0.6871 
0.7645 
0-8216 
0.8634 
0.8940 
0.9638 
0.9841 

0.5507 
0.6029 
0.6496 
0.7276 
0,7879 
0.8339 
0.8689 
0.9534 
0.9792 

0.5255 
0.5757 
0,6212 
0.6990 
0.7610 
0.8098 
0.8479 
0.9440 
0-9748 

TABLE 2 .  Values of contraction coefficient C, 

1.2 

0~5000 
0.5480 
0.5921 
0.6692 
0.7324 
0.7835 
0.8245 
0.9329 
0.9695 

extending over most of the plate facing the pipe, as may be seen from figure 4. 
The insensitivity of C, to sib over the practical operating range of plate valves 
has important implications. Consider a valve working a t  constant inlet and 
outlet pressures pb and p,. The pressure p ,  along CE in figure 2 is given by 

(21) 

thus if cavitation determines pi (so that the left-hand side of this equation is 
constant) Ic will decrease as slb is increased, though the decrease of k will be fairly 
small for values of s/b up to about 0.5. For instance, if k = 2 when slb = 0.1, 
reference to figure 3 shows that increasing slb to 0.5 decreases k to about 1.86. 
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If cavitation does not occur andp, - p j  is governed by a turbulent reattachment 
process, k will be roughly constant and independent of p,-p,, provided that 
the orifice land is long enough to achieve full pressure recovery at  reattachment. 

FIGURE 5 .  Pressure distribubion along the separating streamline for various values of k .  

If it  is not long enough to do so, k will decrease ass increases. Thus for all the usual 
flow conditions k will either remain roughly constant or will decrease as s is 
increased. The falling off in figure 3 at about slb = 0-3 of the curves of C, for con- 
stant k can thus be interpreted as an increasing loss of control as the plate moves 
away from the land. 

The effect of changes in k on contraction coefficient and free-streamline shape 
is most pronounced when k is close to unity (where 1 yo changeinkproduces about 
1 % change in C,). When reattachment occurs under non-cavitating conditions, 
the shape of the separating streamline taken from figure 6, with an appropriate 
value of k ,  may be expected to give a fair approximation in the neighbourhood 
of the corner to the separating flow of a real fluid, although the discontinuity in 
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FIGURE 6. Separation streamline for various values of k.  

pressure gradient at  E along the separating streamline illustrates discontinuity 
in velocity gradient which would not be expected in a real flow. 

As the value of k increases the length of the constant-pressure zone contracts, 
tending to the limiting case of unseparated flow with infinitely negative pressure 
at  the corner C as k -+ co. 

4. Experiments on a plate valve 
The foregoing analysis arose from experiments on an axisymmetric plate 

valve. Although pressures along the land could not be measured with sufficient 
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accuracy to make worthwhile comparisons with the results of calculations, some 
typical discharge coefficients are shown in figures 7 and 8, for their incidental 
interest. The lower curve of figure 7 indicates a non-cavitating flow system in 
which reattachment does not take place on the land: under non-cavitating 
conditions the appropriate value of k is unity and the value of Cc obtained from 

I .o 

0 9  

0.8 

0.7 

00 
R 

FIGURE 7. Variation of C, with Reynolds number for an axisymmetric plate valve; 
the Reynolds number is defined in terms of the discharge Q and the orifice diameter D 
by R = QInDv. 

FIGURE 8. Variation of C ,  with land/gap ratio in an axisymmetric plate valve. 

figure 3 €or the corresponding two-dimensional flow agrees well with the measured 
value of C,. The upper curve indicates flow with reattachment, in which the 
pressure recovery, demonstrated by changes in C,, varies with the Reynolds 
number R to a significant extent. Figure 8 shows that pressure recovery in the 
reattaching flow depends strongly on the land length. Although a smooth. 
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transition is shown from separated to reattached flow as 11s increases, some cases 
of instability were noted in which, a t  fixed valve geometry and fixed R, two 
flow patterns were possible, depending on whether the condition were approached 
by increasing or decreasing the flow; such a characteristic is undesirable if the 
valve is to be used as a control device. The effect of cavitation was to decrease 
C,, the decrease being more pronounced in the regime of reattached flow. 

The authors wish to express their gratitude to Rolls-Royce Ltd, for providing 
assistance during the work on the project, which was conducted a t  the University 
of Nottingham. 
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